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On the Realization of Resistively Matched
Three-Ports and the Ramp-Waveform
Responses of Resistive, Signal-Split

Three-Port Transmission-Line Networks
Iwata Sakagami, Member, IEEE, and Akihiro Kaji

Abstract— Three-port networks consisting of three transmis-
sion lines and three branching resistors at a junction, for the
conditions of TEM wave propagation and Iossless lines, are
discussed. This discussion entails the following: 1) The matching
conditions for the resistive three-port are modeled by scattering
matrices. 2) As transmission lines of unequal length are used,
the network transfer functions are derived for three different
delay variables. These functions are obtained in a matrix form
after their expansions with respect to these variables are derived.
As a consequence, output waveforms can be calculated from
the network transfer functions or their expansions. This method
of expansion is superior to the conventionally used lattice dia-
gram for analyzing high-speed logic circuits and designing their
interconnections. 3) Three characteristics of output waveforms
are discussed. 4) Ideal networks that furnish the same output
waveforms as their inputs and practical networks that have
parameters as close as possible to the ideal are described. 5)
Examples of networks that keep the ringing of output waveforms
within given tolerances, from the first arriving wave to the steady
state, are presented. 6) Finally, this paper concludes with a
discussion of power dissipation.

I. INTRODUCTION

T HE DEVELOPMENT of high-speed logic circuits has
led to a need for higher-speed pulse techniques. Progress

has been made, but there are still some problems with the
equalization of distorted pulse waveforms [1], [2] and with the
suppression of multiple reflections (reflected waves), which
propagate on printed transmission lines between connecting
points and mismatched terminals, such as the input ports
of high-impedance logical circuits [3]–[5]. These multiple
reflections also arise at the junction of three transmission lines
when the signals on a transmission line are split. This results
in distorted waveforms, an increase in the effective rise time,
and false triggering.

The time-domain behavior of distributed transmission-line
networks has been studied in [6]–[ 10]. This paper discusses
the problems of a transmission-line network with one branch,
as treated earlier in [11 ]–[ 14], and presents a method for

obtaining output waveforms similar (within given tolerances)
to the input waveform. Our discussion proceeds as follows:
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Fig. 1. Circuit representation of a resistive three-port.

The realization of a resistively matched three-port (Fig.
1) is discussed, and the non-negative region of this
realization is presented for the case of arbitrary load
resistors (Fig. 2).

The network transfer functions of the circuit in Fig. 3,
as well as their expansions, are derived for the analysis
of output responses and circuit design; each term of the
expansions corresponds to an individual reflection, e.g.
the first arriving wave, the second arriving wave, and
so on.

Characteristics of the output response-especially the
steady-state voltage, the monotonic increment, and the
effective delay time—are examined,

Ideal networks are suggested, i.e., networks whose out-
put waveforms are identical to the input waveforms,

and where no reflections are created. However, as these
ideal networks cannot be realized physically (i.e., they
are in the negative region of realization), networks that
mimic as closely as possible an ideal response are
presented.

Limitations on the range of the voltage of the first
arriving wave (i.e., the first arriving voltage) are dis-
cussed with regard to the quasi-ideal networks discussed
above.

Finally, the power dissipation in the circuits of interest
is discussed.
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Fig. 2. The realization region of resistively matched three-ports. The
clear area inside the hatched area represents r 1. rz. rs ~ O. The region

rl, rz, rt > 0 PIUSthe hatched area represents O < s12. 513>523 < 1.

Qc H,gh Impedance Loading
!&”2k _ /1

~+w3k
@.

Fig. 3. A three-port consisting of transmission lines and branching resistors.

II. THE REALIZATIONOF
RESISTIVELYMATCHED THREE-PORTS

Fig. 1 depicts a resistively matched three-port where

RI, R2, R3are load resistors at ports 1=, 2C,3C, respectively;

rl, T-2,r3 are branching resistors;

Ulk, U2k, u~k are incident voltage waves; and

‘WIk,wzk, wsk are reflected voltage waves.

The voltage wave matrix [T’] of Fig. 1 is given by

or Wk = [~]~k. (1)

The subscripts [1’] are not those conventionally used. How-
ever, this notation is useful as it represents the direction of the
signals and makes it easier to visualize their flow, as shown
in Fig. 4. For instance, T12 represents a voltage-transmission
coefficient from ports 1. to 2C. In general, the elements in [T]
are given by

riz= [(T2– Ri)(Xj + ~k) + ~jxk]/AR (2a)

T~,J= 2RJXk/AR (2b)

where F;i is the coefficient of voltage reflection at porl
iC; Xi = r, + R~; AR = X1X2 + X2X3 + X3X1 and ~,.?’:

Fig. 4. A signal flow graph (SFG) for the cwcuit of Fig. 3.

and k = 1, 2,3, respectively. The scattering matrix can be

written as

[s]= [m]-’ [T][@] (3)

where [@] = diag (fi, fi, a). Therefore, S’L?= rii

and S,l = A,j Tj,. Obviously, Tij # Tj, at Ri # RJ, but
S,l = S’ji = 2BiJxk/AR (where ~~j = ~m and

Bij = -).
For equal load resistors, it has been known that the matching

conditions at all three ports are given by r, = R./3, where
R. = Ri, i = 1,2,3 [2], [1 1]. This ensures that at least one

realization exists, and provides for the following assumption:

[1
o S12 S13

[s] = s,, o S23 . (4)
S13 S23 O

Therefore, a problem that remains is to determine the realiza-
tion regions of r~ for arbitrary load resistors. In the treatment
of matching networks that follows, S,J‘S willrepresentthe

elements of a scattering matrix. In general,

[z]= [V%](E+ [S])(E- [s])-’[v’R] (5)

where [Z] is the impedance matrix and E is the unit matrix.
For the case of ports i and j,, (5) yields

[zli~= (~ _ls:,)[
R,(l+.s:j) 2BiJ S,l

2Bijs~j 1RJ(l+s~j)
(6)

When the resistance .~k = ‘rk+ Rk is grounded, the network
shown in Fig. 1 is regarded as a T-type two-port with respect
to ports i and j (i, j # k). Therefore, the impedance matrix of
this two-port is given by [15]

[

?’i + Xk[Z]*,= Xk

Xk
rj + X~ 1

(7)

From (6) and (7), the desirable resistance for the branching
resistors r,, for all three ports to be matched to the load
resistors, can be obtained as follows:

Equations (8a) and (8b) satisfy the input match at ports i and
j, respectively. For the input match at port k, it is necessary
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TABLE I
NUMERICALEXAMPLESOF THREE-PORTS

Point S(2,2) Point M(4/3,4/3) Point Q(1,6)

E-1-E
that r~ = Rk – (Xi//Xi). From (8c) and the input-matching
condition at port k, we have

Thus. when the load resistors are given, the resistively matched

three-port can berealized by using (8) and (9).
Next, let usconsider the regions where rl, rz, rq >0. The

horizontal and vertical axes in Fig. 2 are A~2 = R2/R1 and

A~3 = R3/R1, respectively [13]. Two cases are of interest:
For A12 z 1:

3A12/A. ~ R3/Rl ~ A12/(Az~–A~z+2 A~2 – 1) (lOa)

For A12 s 1:

where AU = A12 + A21 + 2 A~2 + A~l – 1.
The curves a, b, and c in Fig. 2 represent the cases of
rl = O,r2 = 0, and r3 = O, respectively. The clear area
inside these three curves is the region where rl, r2, r3 ~ O. The
hatched area indicates the region where O < S12, S13, S23 <1
and one of the three resistors rl, r2, and T3 becomes negative.
Table I shows numerical examples of this, which will be
discussed later.

III. SERIES EXPANSIONS AND THEIR

NETWORK TRANSFER FUNCTIONS

Let us consider the network shown in Fig. 3. Although
arbitrary branching resistors ri are assumed here, if the results
from Section II are applied to them, no reflections can be
expected at the junction of the three lines. The symbols in

Fig. 3 are as follows:

Rlfi is the internal resistance of the source;

R21, R31 are resistors for input matching or amplitude com-

pensation in high-input-impedance logical circuits; and

ZI, .Z2,X3 are the characteristic impedances of lines

1, 2, and 3, respectively.

Fig. 4 shows an equivalent signal-flow graph (SFG), where
each line in Fig. 3 is divided into two parts: the upper and
lower lines on which the forward and backward traveling
waves, respectively, propagate. r~ is the time required for the
TEM wave to propagate on the ith line. T1 is the voltage-
transmission coefficient from the generator to line 1. In Fig.
4, 17,, and T,j are given by replacing R, in (2) with .zi. T1

and ri are given by

I’i = (Ril – zi)/(Ril + z,), i = 2,3. (11)

1+ 17zrepresents the voltage-transmission coefficient from line
i to the load R,l. When an incident wave is applied to port
i. (i = 1,2, 3), the characteristic impedances in Fig. 3 play the
same role as the load resistors in Fig. 1, because the incident
wave cannot see the terminal resistors Rl~, R21, and R31 at
this point. Replacing R, in (3) through (9) with Zi enables the

resistively matched three-port in Fig. 1 to be realized at the
junction in Fig. 3.

As transmission lines of unequal length are used in Fig.
3, the network transfer functions will include three different
variables:

& = exp(–sTi), s = jti, z = 1,2,3. (12)

When wl~– 1 travels from port lC to port 1, is reflected at port
1, and then arrives again at port lC, we have ~lk = rt@lk_l.
Therefore,

Denoting the above matrix by [D], and using (1), we obtain

where I’c = [T][D]. When a forward-traveling voltage wave
6(t) appears at port 1, and as <1 = .T[6(t – Tl)] at port lC,
the initial condition can be given by

’241= [<l o O]t (15)

where 3 is the Fourier transform and t denotes transpose.
Therefore,

W1 = [T]ul (16)

The true voltages wObl, wOkz, and wOks that are induced by UJh

at ports 1, 2, and 3 are obtained as the sum of the incident
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and reflected voltage waves [16]. Therefore,

[

(1+ r,)g, o

~Ob = o (1 +:,)&,
(1 +:3)<3 1

w~ (17)
o 0

where wOb = [wObl wObz ulOb~]t. Denoting the above ma-

trix by [N], and using (14), we obtain the sum total for wOb
fork =l,2,.. ., which can be represented by

G((,) = [N](13+~C +~; + ..)7.01 (18)

where G(C,) = [G1l(&, ) G12((, ) G13(f, )]t. The element

G1l (fi) must be equal to the reflection coefficient “seen”
looking into the network in Fig. 3 from port 1, and the other
elements G12 ((t) and G13 ((,) must represent the network
transfer functions from port 1 to port i, i = 2,3, because the
input of 6(t) is assumed at first, after which the components

of the output response are all added at each output port. In
calculating (18) up to k = 3, for instance, G12 (&i) is given by

GM(&) =(1 -t- r2)(l&?{T12 + (~13r3~32&;

+ r11r1T12<:+T12r2r22<;)
+ [(r11r1)2T12f?+r11r1n2r2r22##
+ (r11r1T13r3T32+~13r3T31r1~12)g(:
+2v12r27721r1T12&&+n2(r2r22)2tj
+ @13r3T32r2r22+T12r2T23r3T32)&g
+T13r3r33r3~32@+...} (19)

The first component of (19) represents the first arriving wave.
Equation (18) can now be rewritten as (see Appendix A)

G(&) = [N](E – ~c)-lwl. (20)

In calculating the inverse matrix, the transfer function G12(~,)

is given by

G2(L) = {(1 + r2)t1t2p12

+ (~13~32 – ~12r33.

where A is given by the following:

A = I – rlrll~: – r2r22c;– r3r33ti
+ [(r11r22– T12T21)r1r2]&<;
+ [(r22r33– T23T32)r2r3]&:
+ [(r11r33– T13T31)r1r3]#f;
+ [(r11~23~32+r225213~31+r33~12~21
– rl~rzzrs~– ~12&~31– ~lq~sz~zl)
● r1r2r3]f?c;ci

(21)

IV. THE CHARACTERISTICOF OUTPUT RESPONSES

A. The Sum of Impulse Response Components

As we can see from (19), the coefficients of the expan-
sion provide the impulse response components directly. As

“p -Kq”;“0” as‘j’P”’/

Fig. 5. Graphic definition of the effective
delay time T~ = max ( ~D~. ~DL ),

(iIti=o = L the sum of all the network’s impulse
components can be given by the following:

+
Time

response

G12(<,)lw=o

= {(l+ r2)[T12+ Cr13T32– T12r33)r3]}/Alm=o
(22)

From the convolution [6], [9], the step responses (or ramp

responses) are obtained by adding the replicas of the applied
waveform according to the time spacings given by the fi ‘s.
Therefore, the amplitude at the steady state for an input unit
function can also be obtained from (22). Equation (22) is
necessary if one is to study the relationship of the first arriving
wave to the steady state (see Fig. 12, below).

B. The Monotonic Increment of Output Responses

From (2b), T,j >0 holds for non-negative resistors. There-
fore, under the conditions of I’;, 17~,20, the impulse-response
components are always positive and the output waveforms for
an input step function increase monotonically.

C. The Effective Delay Time TD

Let us introduce threshold levels VL and VH. For instance,
VL = 0.9 and VH = 1.1 could be set as a tolerance for the high
level 1.0. In this paper the effective delay time 7D is defined

by TD = max (’TDH,TDL) (from Fig. 5). ‘r~~ is the period
from the onset of an output waveform to the time at which the

output response rises past the lower threshold level VL (and
never falls below VL after that). rDH is defined similarly for
the upper limit.

In the case of matched three-ports, 17ii = O holds for
i = 1, 2, 3. Let the first arrivingvoltages at two output ports be

If ri Z O, then the output responses of an input step function
increase monotonically and never fall below the first-stage
threshold level VL. Therefore, TD = Oholds if the steady-state
values are within the range of tolerance.
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TABLE II

AN EXPLANATIONOF FIG. 7

Normahzed
Element ReflectIon Input/Output Illustration
Values, Coefficients Terminal Fmt Arriving Steady-State Monotomc Tolerance of Network
,=],2,3 at the lunctrm Conditions Voltage Voltage Increment (0,9-1.1) Pattern

r

2=1 r, = 0(1)

r,, =-+ 4/3 2 no no(s)
rco

no
rj = r~ = 1~1) (TD#o)

Zj=l
r,, =-+ r,=r, =r, 213 2/3

<=0
yes(d) no

=0
(zDn:o)

Zl=l
r,, =–~ r,=o 0.9 1.02 no nO(S) Fig. 9

<=()
r,=r, =&

(TD# o)

Z,=l
r,=o

Z2=Z3=+ r,, = o r,=r, =& 0.9 1.02 yes yes(7) Fig. 10(a)

q=(l (ZD =0)

r2=r3=Z
3

Notes to Table II: (l) Input match. (2) Open termmals. (3) 7D =effective delay time. (4) Theamplitudes areconstantly 2/3 for
G12(f, ) = (~)~l(z and Gls(<, ) = (~)<1c3. (5) Thenetwork transfer functions fOrthis case areas follows:

G12(<t) = (*)fl<2 – (&)< I<; + (+)(1(2<; + .

&3(&) = (~)<l&3 + (fi)<l<; <3 – (*)<l<; – .

The tolerance N satisfied neither at port 2 nor at port 3 by the second terms. After the thmd terms, the output responses satisfy the
tolemrrce. Comparing Case B with Case C. ltisseen that themismatch atports2and3 hftsthe steady -state voltage from 2/3to 1.02, and
terminal resistors Rz1 andi?sr of 27/13 in Fig. 9 contribute to amplitude compensation. (6) Case D isderived from point M. (7) The first
arriving voltage 0.9, the steady-state voltage 1.02, and the monotomc increment, are nrdependent of the length of the transmission hne.
Therefore. ~D =Oholds, regardless of thevariatlonof rl.~~. and T3.

V. NETWORKS FOR IDEAL RESPONSES
K’ %

Fig. 6 shows an input ramp waveform. Figs. 7 and 8 show

the results of output calculations where T1 = 72 = 1.0 nsec,
T3 = 1.5 nsec: 171 = O is assumed. (The last two figures are
constructed simply by adding replicas of Fig. 6: for further

explanation of Figs. 7 and 8, refer to Tables II and III.) Fig.

9 shows a network with no branching resistors. representing
Case C.

In the following we discuss cases where two characteristic
impedances are equal. Matched three-ports at the junction are
assumed.

A. For :2 = Z3: The realization region is on the line rep-
resenting R3/Rl = Rz /R1 in Fig. 2. (In Fig. 3, R3/Rl and
R2/Rl are replaced by z3/.zl and z2/zl.)

A.1. Point S of Fig. 2: From the T,l’s in Table I and the

SFG in Fig. 4. we have

0
J

, I 1 r
0.0 10 m

Time %*C>

Fig, 6. An input ramp waveform.

A.2. Point M of Fig. 2: Point M is as near as possible to
G12(&) = (1 + rz)~l& the ideal point S, providing an optimum three-port [13]. (For

and G13(~, ) = (1 + I’3)f1f3 details, refer to Case D in Table II and Figs. 7 and 10(a)).
B. For Z1 = Z2: The realization region is on the line repre-

This indicates that the same waveform as an input can be senting Zz/zl = 1 (i.e., on the line representing Rz /R1 = 1 in
obtained at two output ports. However. a negative branching Fig. 2). The realization region of the non-negative branching
resistor is required. as shown in Table I. resistors is above the region defined by 0.75 S 23/21 < m.
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Ca?eAA

(-----)

CaseBB
(—–—)

LCaseCC
(—––—)

TABLE III
AN EXPLANATIONOF Fm. 8(1)

Normalized Reflection Input/Output
Element

Illustration
Coefficients Tenninsl Fust thriving Steady-State Monotonic Tolerance

values
of Network

at the Junction COndltiOns Voltage Voltage Increment (0.9-1.1) Pattern

Z,= Z2=1

Z3=6 r,=o
r,, = o rz. + 0.9 0.9320J no(q) no(5) no

G=rl=+
0,884@) (TD#o)

r3=+~,=%
23

2,=22=1

r,=oZ3=6 r,, = o r2=+
23/24@j 1.0 yes yes Fig. 10(b)

q=r2=& (TD = o)
r~=++r3=~

2,=2 -1~—

23=6 r,, =-*(’} r,=o

rz=~
0.96 0.9980) no(O yes(9) no

L = rz =0(7) r,, =-& 0.960@J
r3=~

(TD= o)

r,=% r,~ =-~

Notes to TableIII:(1) CasesAA,BB,and CC are derived from point Q. (2) Value at port 2. (3) Value at port 3. (4), (5) These are because
rz < t). To be I_’z~ O, the first arriving voltage (1 + 172)!Z’12must be greater than or equal to 0.917. (6) The value 23/24 is found at the
intersection of two curves, drawn with a solid line, in Fig. 12. (7) As i-l and r2, derivedfrom point Q, have the low resistance1/23,they
are removed.Therefore,r,, # O,i = 1.2.3. (8), (9) The conditionsfor monotonicincrementare not satisfied.However,the upwardand
downwardvibrationsdue to r,, < () are not easily observedin Figs. 8(a) and (b). In Fig. 8(a) the output response at port 2 is virtually the
same as that in Case BB.

From Z1 = Z2 we have

T12 = 2’21 = (2z3 – zl)/(2zs),

T31 = T32 = zl/2.zs,

and T13 = T23 = 0.5

B.1. Z3 + CQ: AS T12 = T21 -+ 1,T31 = T32 -+ O,

and T13 = T23 ~ 0..5, then

G12(&) + (1 + r2)~1<2

and G13(&i) ~ 0.5(1 + 173)&&(l + l_’2&)

As 17z = O and r~ = 1, ideal results are obtained as in the case
of point S. However, a transmission line havig .Z3= cm cannot
be fabricated in a practical application. Therefore, point Q of
Fig. 2, i.e., where Z3/Z1 = 6 (this is 300fl for the reference
impedance of 500), will be chosen as a value that can be
realized.

B.2. Point Q of Fig. 2: Point Q offers desirable results in a
different sense than does point M. Figure 10(b) indicates one
of the networks designed from point Q, (For details, refer to
Fig, 8 and Table 111.)

VI. THE AMPLITUDESOF THE FIRSTARRIVING

WAVE THAT ARE REQUIRED FOR TOLERANCE

As shown in Case AA of Table III, even if the first arriving
wave satisfies the tolerance range from 0.9 to 1.1, the steady-

state voltage does not always satisfy that condition. Therefore,
it is necessary to examine the relationship of the first arriving
voltage (FAV) to the reflection coefficients r2 and r3, as well
as to the steady-state voltage. Let us now consider two cases,
referring to Figs. 11 and 12.

A. Point M (dashed line): I’i > 0, i = 1,2,3 ‘holds in the
range 0.9 < FAV < 1.1.

The steady-state voltage in the range 0.9 to 1.1 is satisfied
by 0.9< FAV < 0.946.

B. Point Q (solid line):

r, ~ Ofor O.917 < FAV <1.1,

The steady-state voltage in the range 0.9 to 1.1 is satisfied
by 0.908< FAV < 1.006.

For the above two cases it can be seen that FAV has to be
set in the range from 0.9 to 0.946 for the networks derived
from point M, and in the range from 0.917 to 1.006 for
the networks derived from point Q, in order to satisfy the
monotonic increment, the given tolerance range (0.9- 1.1), and
l-~ = o.

Considering the tolerance range of FAV, it can be said that
the realizability of output waveforms such as those in cases D
of Table II and BB of Table III is limited to a narrow region.

VII. POWER DISSIPATION

Let us assume that an impulse voltage wave of unit am-
plitude is applied to port 1 at t = O. From Z1 = 1, the
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Fig. 7. Output waveforms. (a) At port 2. (b) At port 3. Case A:
Case B: —; Case C: –––; Case D ——

—;

incident power is represented by P,~ = 1 (see Appendix B).
In this section the output waveforms derived from the network
impulse components through convolution [6], [9] are assumed
not to overlap.

A. Power Dissipation at Terminals

The power P ,r, to be returned to the source, and the powers
P02 and P03, to be consumed at ports 2 and 3, are represented
by

k=l

and
m

(24a)

200

1
I

a)
J

2
-P
-1
0 1,0 ,_-_~=_____.-.—-—.-.---.-.—-.

1 j-
------------------ ----------

+
5

/

% /

d [
/

L 1 ,
!+ 10 20

Tim <nsec~5

(a)

----------------- ---—---------—---—-.. .. ... ... ... ... ... ... ..- ... ... ... ... ... ...
j_____________________________

1

~

/

/

(b)

Fig. 8. Output waveforms. (a) At port 2. (b) At port 3. Case AA:
----; Case BB: – - –: Case CC: – -- –

+7 79

Fig. 9. A network with no branching resistors, representing Case C

B. Power Losses in the Inner Resistors

B.1. power Loss pd (TI ): When a unit incident power
P~n = 1 arrives at port lC at time t = T1,let the power
transmitted from port lC to port 2. be P(2C, T1) = 1S1212, and
let that from port lC to port 3, be P(3C, ~1) = 1S1312.As the
reflected power at port 1. is given by IS11I2, the power loss
$’d(TI ) at t = ?_I is represented by

k=l

where G ~~ = l/R1, and G,l = l/R,l, i = 2,3. Avk
and A,k, i = 2,3, are the kth expansion coefficients of
Gll(<~), GIz(&), and Gls(<~), respectively.

p~(TI) = (1 – ISI112 – IS1212 – IS1312). (25)

(24b)

B.2. Power LOSSeSpd(7~ + 272), Pd(T1 + ZT3): The reflected
power at port 2 at t= TI+I-2is P(2,7~+~~) = lrZ12P(2C,Tl).
When the reflected voltage wave at port 2 is transmitted from
port 2C to ports lC and 3C at t = T1 + 2T2, the power loss
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7)7 4.

(a)

A-

(b)

Fig. 10. Networks including resistively matched three-ports. (a) A network
designed from point M, representing Case D. (b) A network designed from
point Q, representing Case BB.

Pd(T1 + 2T2) is represented by

Pd(Tl + 272) = P(2,7i +T2)(1 – [s2212 – 1s1212 – p2312).

(26)
Similarly, the power loss at time t= T1+ 273 is represented by

~~(TIi-%3) = ~(s, T1+T3)(l–lS3312 –l&312-lS23!2) (’27)

where F’(3,T1 +73) = 11’312P(3C,71). ISZZ12and ISW.12relate
to the reflected power at ports 2C and 3c, respectively.

C. A Numerical Example for Fig. 10(b)

The following are the results of calculations up to the third
component:

Gll(&) = &;(ll&;/288 + ll&;/288 + ll&;/3456 + . . .)

G12(&) = & (23<2/24 + 23&z/576 + 23@;/ 13824 + . . .)

G13(&i) = &~(23<3/24 + 23&$3/576 + 23&$/13824 + . . .)

From Section VII-A, the power dissipations

3 are, respectively.

PS, = 0.002928,

Po2 = 0.840000,

and P03 = 0.006667

The scattering matrix derived from (3) is

at ports 1, 2, and

o

~= Q

21 6

--E

/G-
-E
/6
ZI “
0

From Section VII-B, we calculate the power losses of the inner
resistors as

P,.J~l) = 0.118056,

Pd(~l + 2Tz) = 0.000205,

and Pd(TI + 2T3) = 0.032094.

The resultant total power dissipation P& is 0.99995.

i
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Fig. 11. 17~ and 173 versus the first arriving voltage. – – –: Networks
derived from point M.—; Networks derived from point Q.
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Steady-state voltage versus the first arriving voltage. – – –:
Networks derived from point M. —: Networks derived from point Q.

VIII, CONCLUSION

The expansions of network transfer functions involving

three variables have been used to calculate the output re-

sponses of three-port networks consisting of three transmission

lines and three branching resistors at a junction. These calcu-

lations are useful in the analysis of multiple reflections and
network design where the interconnections of high-speed logic

circuits [3], [11 ] or computer networks [12] are concerned.

A well-known method, that of the lattice diagram [4], is

often used to achieve the same analysis and design goals.

However, with the method of expansion presented here, each

term corresponds to an individual reflection, i.e., the first

arriving wave, the second arriving wave, and so forth. It is
expected that this series-expansion approach will be easier to
apply than the lattice diagram method.

The proposed networks are found to be useful not only
for dividing input signals without producing reflections, but

also for increasing the speed of logic circuits, because the
given tolerances of output amplitudes can be satisfied from
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the beginning andthere isnoeffective time delay, The results
presented here can be confirmed as follows. Equation (19)
can also be obtained by tracing all possible paths in Fig.
4. The network transfer function in (21) is equal to a result

derived from Masion’s formula [17]. Also, Case B is a familiar
empirical case, The calculations of power dissipation include
no contradiction.

In this paper, lossless transmission lines, TEM wave propa-
gation, and pure resistances have been assumed. With regard to
the resistors, their physical dimensions have been ignored, as
is usual in electric circuit theory [15], because the propagation-
delay times for the resistors are short enough compared with
those for the lines in interconnections. Even if the parallel
capacitances are included in the terminal resistors of Fig. 3,
these capacitive components will disappear in the steady state,
and thus the output transient responses will asymptotically

approach those of a network consisting of pure resistances.
Given this fact and the above assumptions, it can be said that
the fundamental behavior of the three-port transmission-line
network has been investigated.

IX. APPENDIX A

THE CONVERGENCE OF r<

Rewriting (3), we obtain [1’] = [fi [S][fi -1 for the resis-
tive three-port of Fig. 3, where [~ = diag [fi, ~, @,].
T,j >1 is satisfied in some cases, so the convergence of rf
is of interest:

r: = ([T][D])~= [1/z][s]([D][s])k-l[/2-’[D] (Al)

For a passive network such as that in Fig. 1, we obtain

P~ = [a]+[a] – ([S][a])+([S] [a]) ~ O (A2)

where “+” indicates a conjugate transpose and [a] =
[al a, a3]f # [0]. Equation (A2) holds for all complex
values of at, i = I, 2,3 [16]. When [A] = [D][S],

([S][rZ])+([S][a]) - ([A][a])+([A] [a])

= ([S][a])+QO([S] [a]) >0 (A3)

where QO = diag (1 – 117i12). From (A2) we obtain

P~ = [a]+[a] – ([A][a])+([A] [a]) >0 (A4)

Let the eigenvalue and eigenvector of [A] be a and [z]. From
[A][z] = a[~] and (A4). we obtain

[4+[4 - ([4[4)+([4[+) = (I - 142)[4+[4 ~ o (A5)

Therefore, Ia 12<1. From (A 1), this condition is equivalent to
r! -+ O(k + m). Therefore, (20) can be derived from (18).

X. APPENDIX B

POWER DISSIPATION

When a rectangular wave such as that shown in Fig. 13 is
applied to a conductance Go, the consumed energy will be
IV. = Go A~~o. Let us assume that this rectangular wave is

applied to port 1 in Fig. 3. As pointed out in the summary of
[6]. the time response consists of replicas of the applied pulse,
with each replica having an amplitude Ak that is given by the

.-
/ Lo\

Fig. 13.A rectangular wave.

coefficient of a term in the network impulse responses. When
one of these replicas is incident to a load G1, the consumed

energy will be W1 = GiA~To. When GO = 1 and AO = 1,the
ratio Wl /W. becomes equal to G1At, and hence represents
the ratio of the power consumption at the load to the incident
unil
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