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On the Realization of Resistively Matched
Three-Ports and the Ramp-Waveform
Responses of Resistive, Signal-Split

Three-Port Transmission-Line Networks

Iwata Sakagami, Member, IEEE, and Akihiro Kaji

Abstract— Three-port networks consisting of three transmis-
sion lines and three branching resistors at a junction, for the
conditions of TEM wave propagation and lossless lines, are
discussed. This discussion entails the following: 1) The matching
conditions for the resistive three-port are modeled by scattering
matrices. 2) As transmission lines of unequal length are used,
the network transfer functions are derived for three different
delay variables. These functions are obtained in a matrix form
after their expansions with respect to these variables are derived.
As a consequence, output waveforms can be calculated from
the network transfer functions or their expansions. This method
of expansion is superior to the conventionally used lattice dia-
gram for analyzing high-speed logic circuits and designing their
interconnections. 3) Three characteristics of output waveforms
are discussed. 4) Ideal networks that furnish the same output
waveforms as their inputs and practical networks that have
parameters as close as possible to the ideal are described. 5)
Examples of networks that keep the ringing of output waveforms
within given tolerances, from the first arriving wave to the steady
state, are presented. 6) Finally, this paper concludes with a
discussion of power dissipation.

I. INTRODUCTION

HE DEVELOPMENT of high-speed logic circuits has

led to a need for higher-speed pulse techniques. Progress
has been made, but there are still some problems with the
equalization of distorted pulse waveforms [1], {2] and with the
suppression of multiple reflections (reflected waves), which
propagate on printed transmission lines between connecting
points and mismatched terminals, such as the input ports
of high-impedance logical circuits [3]-[5]. These multiple
reflections also arise at the junction of three transmission lines
when the signals on a transmission line are split. This results
in distorted waveforms, an increase in the effective rise time,
and false triggerings.

The time-domain behavior of distributed transmission-line
networks has been studied in [6]-[10]. This paper discusses
the problems of a transmission-line network with one branch,
as treated earlier in [11]-[14], and presents a method for
obtaining output waveforms similar (within given tolerances)
to the input waveform. Our discussion proceeds as follows:
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Fig. 1. Circuit representation of a resistive three-port,

The realization of a resistively matched three-port (Fig.
1) is discussed, and the non-negative region of this
realization is presented for the case of arbitrary load
resistors (Fig. 2).

The network transfer functions of the circuit in Fig. 3,
as well as their expansions, are derived for the analysis
of output responses and circuit design; each term of the
expansions corresponds to an individual reflection, e.g.
the first arriving wave, the second arriving wave, and
sO on.

Characteristics of the output response—especially the
steady-state voltage, the monotonic increment, and the
effective delay time—are examined.

Ideal networks are suggested, i.e., networks whose out-
put waveforms are identical to the input waveforms,
and where no reflections are created. However, as these
ideal networks cannot be realized physically (i.e., they
are in the negative region of realization), networks that
mimic as closely as possible an ideal response are
presented.

Limitations on the range of the voltage of the first
arriving wave (i.e., the first arriving voltage) are dis-
cussed with regard to the quasi-ideal networks discussed
above.

Finally, the power dissipation in the circuits of interest
is discussed.
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Fig. 2. The realization region of resistively matched three-ports. The
clear area inside the hatched area represents ri.ra.73 > 0. The region
r1.r2,r3 > 0 plus the hatched area represents 0 < 812,513,523 < 1.
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Fig. 3. A three-port consisting of transmission lines and branching resistors.

II. THE REALIZATION OF
RESISTIVELY MATCHED THREE-PORTS

Fig. 1 depicts a resistively matched three-port where

R1, Ry, Raare load resistors at ports 1., 2., 3., respectively;
r1,T9,T3 are branching resistors;
Ui, Usk, Usj, are incident voltage waves; and

W1k, Wok, W3k, are reflected voltage waves.

The voltage wave matrix [T] of Fig. 1 is given by

Wik Ty T Ta | | uik
war | = | Tz Tao T2 | | uzk
W3k Tis Tos T'zz | | usk
or wy, = [T]ug,. €8]

The subscripts [T7] are not those conventionally used. How-
ever, this notation is useful as it represents the direction of the
signals and makes it easier to visualize their flow, as shown
in Fig. 4. For instance, T} represents a voltage-transmission
coefficient from ports 1. to 2.. In general, the elements in [T’]
are given by

Ty = [(re — R)(X, + Xi) + X, Xi]/Ar
T, = 2R, Xx/Ag

(2a)
(2b)

where I';; is the coefficient of voltage reflection at port
i;X; =1, + Ri; Ap = X1 Xo + XoX3 + X3X; and 14,7,

Fig. 4. A signal flow graph (SFG) for the circuit of Fig. 3.

and k = 1,2,3, respectively. The scattering matrix can be
written as

[S] = [VR*[T][VR] 3

where [VR] = diag (v/Ry,vVRa2,/R3). Therefore, S,, = T
and S,; = A,,Tj,. Obviously, Ti; # T, at R; # R, but
Sy = S5 = ZBiJXk/AR (where A;; = \/RJ/R; and
Bi, = JR.R;j).

For equal load resistors, it has been known that the matching
conditions at all three ports are given by 7, = Ry/3, where
Ry = R;, i = 1,2,3 [2], [11]. This ensures that at least one
realization exists, and provides for the following assumption:

0 512 s13
si2 0 so3 . 4
s13 s23 O

Therefore, a problem that remains is to determine the realiza-
tion regions of r; for arbitrary load resistors. In the treatment
of matching networks that follows, s,;’s will represent the
elements of a scattering matrix. In general,

2] = [VR)(E + [S)(E ~ [S]) "' [VE] %)

where [Z] is the impedance matrix and E is the unit matrix.
For the case of ports ¢ and j,, (5) yields

1 [Rt(l + 7))
(1—s7) | 2Bijsi
When the resistance X, = 7% + Ry is grounded, the network
shown in Fig. 1 is regarded as a T-type two-port with respect
to ports 4 and j(i,j # k). Therefore, the impedance matrix of
this two-port is given by [15]
_ ‘ ;s + Xg X

A

From (6) and (7), the desirable resistance for the branching

resistors r,, for all three ports to be matched to the load
resistors, can be obtained as follows:

ri = Ry(s%; — 24,8, + 1)/(1 — 55 (8a)
T = Rj(s — 24,5, +1)/(1- (8b)

2 4 T
’“:RkKS?J-F 2Bys,y )}/(1_%) (8c)

Equations (8a) and (8b) satisfy the input match at ports < and
4, respectively. For the input match at port k, it is necessary

2Bi18”

A = R,(1 +s1~’j>}' ©

(N
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TABLE I
NUMERICAL EXAMPLES OF THREE -PORTS
Point S(2,2) Point M(4/3,4/3) Point Q(1,6)

R R =1 R =1 R =R, =1
‘ R2=R3=2 R1=R3=% R3=6

r=-1 r=0 n=h=%
A

n=r=2 n=rn=% n=%

T, =T5=1 T,=T,=% T,=T,=%
z, L,=Ty=1 T,=T,=% T,=T,=%

L;=T,=0 T23=T32=% T13=T23=%

that rp, = R — (X;//X;). From (8¢c) and the input-matching
condition at port k, we have

8 = [(R, + RJ)Rk - RLRJ]/QRkBi]. 9

Thus. when the load resistors are given, the resistively matched
three-port can be realized by using (8) and (9).

Next, let us consider the regions where 71,795,735 > 0. The
horizontal and vertical axes in Fig. 2 are A3, = Ry/R; and
A% = R3/ Ry, respectively [13]. Two cases are of interest:

For A12 > 1:

3A12/Aa < R3/R1 < A1z/(A21—A12+24/ A7, — 1) (10a)

For A5 < 1:
3A12/Aq < Ry /Ry < Aja/(Arp— A1 +24/ A3, — 1) (10b)

where A, = Ajg + Aoy + 2/ A2, + AZ, - 1.

The curves a, b, and c in Fig. 2 represent the cases of
r1 = 0,72 = 0, and r3 = 0, respectively. The clear area
inside these three curves is the region where r1, 79,73 > 0. The
hatched area indicates the region where 0 < s13, 813,823 < 1
and one of the three resistors r1, 72, and 73 becomes negative.
Table I shows numerical examples of this, which will be
discussed later.

HI. SERIES EXPANSIONS AND THEIR
NETWORK TRANSFER FUNCTIONS

Let us consider the network shown in Fig. 3. Although
arbitrary branching resistors r; are assumed here, if the results
from Section II are applied to them, no refiections can be
expected at the junction of the three lines. The symbols in

Fig. 3 are as follows:

Ry, is the internal resistance of the source;

Ry, Ra; are resistors for input matching or amplitude com-
pensation in high-input-impedance logical circuits; and

21, 22, z3 are the characteristic impedances of lines

1, 2, and 3, respectively.

Fig. 4 shows an equivalent signal-flow graph (SFG), where
each line in Fig. 3 is divided into two parts: the upper and
lower lines on which the forward and backward traveling
waves, respectively, propagate. 7; is the time required for the
TEM wave to propagate on the ith line. 77 is the voltage-
transmission coefficient from the generator to line 1. In Fig.
4, T',, and T}, are given by replacing R, in (2) with z. T
and I'; are given by

T =21 /(Ris + 1)
Iy = (R — 21)/(Ris + 21)
Fi = (Rz’l —Zi)/(Ril+Zl),’l'=2,3. (11)
1+T, represents the voltage-transmission coefficient from line
i to the load R,;. When an incident wave is applied to port
ic (4 = 1,2, 3), the characteristic impedances in Fig. 3 play the
same role as the load resistors in Fig. 1, because the incident
wave cannot see the terminal resistors Rig, Rgy, and Ry at
this point. Replacing R, in (3) through (9) with z; enables the
resistively matched three-port in Fig. 1 to be realized at the
junction in Fig. 3.

As transmission lines of unequal length are used in Fig.
3, the network transfer functions will include three different
variables:

& =exp(—sm),s = jw,i =1,2,3. (12)
When w;_; travels from port 1. to port 1, is reflected at port
1, and then arrives again at port 1., we have uyg, = I'é3wig_1.
Therefore,

I o 0
U = 0 szg 0 Wr_1. (13)
0 0 Is8

Denoting the above matrix by [D], and using (1), we obtain
wy = wak—l = Flg——l’wl (14)

where I': = [T][D]. When a forward-traveling voltage wave
6(t) appears at port 1, and as & = F[6(¢t — )] at port 1,
the initial condition can be given by

uy = [§

where F is the Fourier transform and ¢ denotes transpose.
Therefore,

0 0 (15)

wy = [Tuy (16)

The true voltages wop1, Wopz, and wypg that are induced by wy,
at ports 1, 2, and 3 are obtained as the sum of the incident
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vSa’me slope as ;r‘xput

and reflected voltage waves [16]. Therefore,
Ny ,
(1+T)& 0 0 i /\ /\’/
Wop = 0 (14+T5)& 0 wr  (17) %VH f X7
0 0 (14+TI'3)é3 2 \ /\/\
oL V4 i
where wop = [Wop1  Wep2 'wobg]t. Denoting the above ma- *?L / /
trix by [N], and using (14), we obtain the sum total for w,; 8 / /
for k = 1,2,..., which can be represented by © / /
GE)=[N(E+Te+ T3+ Jw (18)
, 1% < tDH %I Time
where G(§,) = [G11(€,)G12(£) G13(€,)]*. The element TpL
G11(&;) must be equal to the reflection coefficient “seen”
Fig. 5. Graphic definition of the effective
delay time 74 = max(Tpy.7pr).

looking into the network in Fig. 3 from port 1, and the other
elements G12(§,) and Gi13(£,) must represent the network

transfer functions from port 1 to port ¢,7 = 2, 3, because the
input of 6(¢) is assumed at first, after which the components

of the output response are all added at each output port. In
calculating (18) up to k = 3, for instance, G12(&;) is given by

Gi2(&) = (14 T2)&16{Tha + (T13T5T5263

+ T Ty Th0€2 + TioToT9062)
+ [(T1171)*T12€} 4 Ty T Tyl oTgpé2E2

4+ ([T ThaT 3Ty + TysTaTa1 D1 Th2) 6362

+ T1alo 101 T1 T126565 + Tia(Tal'22)?6;

+ (T13T3T32 29y + T1oT 9 To3T3Ta9)E562
(19)

+ T1al3053 s Taals] + ...}

The first component of (19) represents the first arriving wave.
Equation (18) can now be rewritten as (see Appendix A)
(20)

IN)(E ~ I'e) ™.

G(&:)

In calculating the inverse matrix, the transfer function G12(§,)

is given by

G12(&) ={(1 + T'2)&:1&[Th2

+ (ThaTsa ~ T12T33) 5631} /A @

where A is given by the following:
A =1-T1T116] — Tol'0éf — I'sT's363

+ [(T11T9e — TioTon )1 T)E5 65

+ [(T22l'33 — To3T32)T2T'3]€5 €3

+ [(T11T 33 — TisTs1 )T T5)€165

+ [(T11T23T32 + Do2T1aTa1 + Tz Ti2T

— 11099133 — T12T23T31 — T13T32T01)

o 'yl )€76563

IV. THE CHARACTERISTIC OF OQUTPUT RESPONS

A. The Sum of Impulse Response Components

As we can see from (19), the coefficients of the expan-

Eﬂwzo = 1, the sum of all the network’s impulse response

components can be given by the following:

G12(52)|w=0
= {(1 + T9)[T12 + (T13T32 — T12T33)'3]}/ Ao
(22)

From the convolution [6], [9], the step responses (or ramp
responses) are obtained by adding the replicas of the applied
waveform according to the time spacings given by the &;’s.
Therefore, the amplitude at the steady state for an input unit
function can also be obtained from (22). Equation (22) is

necessary if one is to study the relationship of the first arriving

wave to the steady state (see Fig. 12, below).

B. The Monotonic Increment of Output Responses
From (2Zb), T}, > 0 holds for non-negative resistors. There-
fore, under the conditions of T';, I';, > 0, the impulse-response

components are always positive and the output waveforms for

an input step function increase monotonically.

IB)
C. The Effective Delay Time 1p
Let us introduce threshold levels Vi, and Vg . For instance,
Vi = 0.9 and Vg = 1.1 could be set as a tolerance for the high
level 1.0. In this paper the effective delay time 7p is defined
by 7p = max(rpm,.7pr) (from Fig. 5). 7py, is the period
from the onset of an output waveform to the time at which the
output response rises past the lower threshold level V7, (and

never falls below V7, after that). 7pg is defined similarly for

the upper limit.
In the case of matched three-ports, I';; = 0 holds for
1 = 1,2, 3. Let the first arriving voltages at two output ports be
(23)

(14 T9)Th9,(1+T3)Ti3 > V.

ES
If I'; > 0, then the output responses of an input step function

increase monotonically and never fall below the first-stage
threshold level V. Therefore, 7p = 0 holds if the steady-state
values are within the range of tolerance.

sion provide the impulse response components directly. As
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TABLE 11
AN EXPLANATION OF FIiG. 7
Normalized ]
Element Reflection Input/Output Illustration
Values, Coefficients Terminal First Arriving Steady-State Monetonic Tolerance of Network
1=1,2,3 at the Junction Conditions Voltage Voltage Increment (0.9-1.1) Pattern
(CaseA) 0 T,=-4 l @ 4/3 2 no no® no
_____ = i -— —
r. r,=T,=1 (1, #0)
z,=1
Case B r =-1L ,=T,=T, 23 23 yes® no no
( ) r=0 u 3 (1, # 0)
s =0 "
z, =1 )
Case C r=-4 =0 0.9 1.02 no no® Fig. 9
—— 7;=0 u 3 , (TD¢0)
L=I=x%
;=1
Case D© =z =4 =0 .
ase Zy =237 3 I,=0 red 0.9 1.02 yes yes? Fig. 10(2)
(——) =0 L=T=% (7p=0)
—_p =2
n=L=3

Notes to Tablg: 1I: (1) Input match. (2) Qpen termnals. (3) rp = effective delay time. (4) The amplitudes are constantly 2/3 for
Gi2(é) = (g’)flfg and G13(&,) = (f)&é;. (5) The network transfer functions for this case are as follows:

Gr2(&) = ($)6é — (35)68 + (35 )5152€§+
Gha(&)) = (T5)61és + (F5)61638 — (F5)6163 —

The tolerance 1s satisfied neither at port 2 nor at port 3 by the second terms. After the third terms, the output responses satisfy the
tolerance. Comparing Case B with Case C. 1t is seen that the mismatch at ports 2 and 3 Iifts the steady-state voltage from 2/3 to 1.02, and
terminal resistors Ko and Rs3; of 27/13 in Fig. 9 contribute to amplitude compensation. (6) Case D is derived from point M. (7) The first
arriving voltage 0.9, the steady-state voltage 1.02, and the monotonic increment, are imndependent of the length of the transmission lme.
Therefore. 7p = 0 holds, regardless of the variation of 1. 7. and 73.

V. NETWORKS FOR IDEAL RESPONSES

1.8

Fig. 6 shows an input ramp waveform. Figs. 7 and 8 show
the results of output calculations where 71 = 7> = 1.0 nsec,
T3 = 1.5 nsec; I'y = 0 is assumed. (The last two figures are
constructed simply by adding replicas of Fig. 6: for further
explanation of Figs. 7 and 8, refer to Tables II and IIL.) Fig.
9 shows a network with no branching resistors. representing
Case C. .

In the following we discuss cases where two characteristic i
impedances are equal. Matched three-ports at the junction are
assumed.

A. For zs = z3: The realization region is on the line rep-
resenting Rs3/Ry = Re/Ry in Fig. 2. (In Fig. 3, R3/R; and
Ry/R; are replaced by z3/z1 and z2/z1.)

Al Point S of Fig. 2: From the T,,’s in Table 1 and the
SFG in Fig. 4. we have

Input Voltage /]
1.0

T | T [
0.0 10 20
Time <nsec>

Fig. 6. An input ramp waveform.

A.2. Point M of Fig. 2: Point M is as near as possible to
the ideal point S, providing an optimum three-port [13]. (For
details, refer to Case D in Table II and Figs. 7 and 10(a)).

B. For z1 = z9: The realization region is on the line repre-
senting za/z; = 1 (i.e., on the line representing Ra/Ry = 1 in
Fig. 2). The realization region of the non-negative branching
resistors is above the region defined by 0.75 < 23/21 < oo,

G2(&) = (1 +T2)616
and 013( =(1+T13)6&s
This indicates that the same waveform as an input can be

obtained at two output ports. However. a negative branching
resistor is required. as shown in Table I.
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TABLE I
AN ExpLANATION OF Fig, 8(1)
Normalized Reflection Input/Output IHustration
Element Coefficients Terminal First Arriving Steady-State Monotonic Tolerance of Network
Values at the Junction Conditions Voltage Voltage Increment (0.9-1.1) Pattern
=2 =1
s r,=0
Case AA 5= r,=0 Eoeel 0.9 0.932® no® not® no
..... Rern =k 2 35 0.884® (7, #0)
=4
=16 3
n=4% ?
z2,=2,=1
s r,=0 .
Case BB L= r,=0 T, =+ 23/24© 1.0 yes yes Fig. 10(b)
=== n=n=% Tz (% =0)
r = =
r =_!% 371
z=2,=1
_ L = 23 (M n =0
Case OC =6 nE o 0.96 0.998@ no® yes® no
< T,=- (3
(———— r=r,=07 I,=-% 2= 3% 0.960 (t,=0)
T, =~ 1 .= 2
n=% 3= TR 3758

Notes to Table III: (1) Cases AA, BB, and CC are derived from point Q. (2) Value at port 2. (3) Value at port 3. (4), (5) These are because
Iy < 0. Tobe I’y > 0, the first arriving voltage {1 + I'2)T12 must be greater than or equal to 0.917. (6) The value 23/24 is found at the
intersection of two curves, drawn with a solid line, in Fig. 12. (7) As ry and r3, derived from point Q, have the low resistance 1/23, they
are removed. Therefore, I',, # 0, i = 1.2.3. (8), (9) The conditions for monotonic increment are not satisfied. However, the upward and
downward vibrations due to I",, < 0 are not easily observed in Figs. 8(a) and (b). In Fig. 8(a) the output response at port 2 is virtually the

same as that in Case BB.

From z; = 29 we have
T = To1 = (223 — 21)/(223),
T3y = Tsa = 21 /223,
andTi3 = To3 = 0.5
Bl .23 —00: AsTig =Ty — 1,131 =T33 — 0,
and T3 = Th3 — 0.5, then

G12(&) = (1 +T2)6162
and Gy3(&;) — 0.5(1 + Tg)&1€s(1 + T'2€3)

AsT'; = 0and I'3 = 1, ideal results are obtained as in the case
of point S. However, a transmission line havig z3 = oo cannot
be fabricated in a practical application. Therefore, point @ of
Fig. 2, i.e., where z3/z; = 6 (this is 30092 for the reference
impedance of 50Q2), will be chosen as a value that can be
realized.

B.2. Point Q of Fig. 2: Point @ offers desirable results in a
different sense than does point M. Figure 10(b) indicates one
of the networks designed from point Q. (For details, refer to
Fig. 8 and Table IIL.)

V1. THE AMPLITUDES OF THE FIRST ARRIVING
WAVE THAT ARE REQUIRED FOR TOLERANCE

As shown in Case AA of Table III, even if the first arriving
wave satisfies the tolerance range from 0.9 to 1.1, the steady-

state voltage does not always satisfy that condition. Therefore,
it is necessary to examine the relationship of the first arriving
voltage (FAV) to the reflection coefficients I's and I'3, as well
as to the steady-state voltage. Let us now consider two cases,
referring to Figs. 11 and 12,

A. Point M (dashed line): T'; > 0,7 = 1,2,3 holds in the
range 0.9 < FAV < 1.1.

The steady-state voltage in the range 0.9 to 1.1 is satisfied
by 0.9 < FAV < 0.946.

B. Point Q (solid line):

', > 0for0.917 < FAV < 1.1,

The steady-state voltage in the range 0.9 to 1.1 is satisfied
by 0.908 < FAV < 1.006.

For the above two cases it can be seen that FAV has to be
set in the range from 0.9 to 0.946 for the networks derived
from point M, and in the range from 0.917 to 1.006 for
the networks derived from point Q, in order to satisfy the
monotonic increment, the given tolerance range (0.9-1.1), and
0 = 0.

Considering the tolerance range of FAV, it can be said that
the realizability of output waveforms such as those in cases D
of Table IT and BB of Table III is limited to a narrow region.

VII. POWER DISSIPATION

Let us assume that an impulse voltage wave of unit am-
plitude is applied to port 1 at ¢ = 0. From z; = 1, the
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Fig. 7. Output waveforms. (a) At port 2. (b) At port 3. Case A: — — —;
Case B: ; Case C. —~—; Case D — —

incident power is represented by FP,,, = 1 (see Appendix B).
In this section the output waveforms derived from the network
impulse components through convolution [6], [9] are assumed

not to overlap.

A. Power Dissipation at Terminals

The power P, to be returned to the source, and the powers
Foo and F,3, to be consumed at ports 2 and 3, are represented

by

o
Py =Gi Yy A% (24a)
k=1
and
oo
Py=Guy A2 (24b)
k=1

where Gls = 1/R15 and Gzl = ]./Rll,’i = 2,3. Ark
and A4 = 2,3, are the kth expansion coefficients of

G11(&;), G12(&), and G13(&;), respectively.
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Fig. 8. Output waveforms. (a) At port 2. (b) At port 3. Case AA:
----; Case BB: - - - Case CC: — - - ~

'Ce ,22:1

@

27/13

21/13

Fig. 9. A network with no branching resistors, representing Case C

B. Power Losses in the Inner Resistors

B.1. Power Loss Py(r1): When a unit incident power
B, 1 arrives at port 1. at time ¢t = 7j, let the power
transmitted from port 1. to port 2, be P(2.,7) = |S12|?, and
let that from port 1. to port 3. be P(3.,71) = |S13/|%. As the
reflected power at port 1. is given by |S11/2, the power loss
Py(r1) at t = 71 is represented by

Py(r) = (1= 8112 = |S1a)? = |S13)%)- (25)

B.2. Power LossesPy(T1 + 272), Pa(71 + 273): The reflected
poweratport2 att = 71 +72 is P(2, 71 +72) = |2|?P(2., 11).
When the reflected voltage wave at port 2 is transmitted from
port 2. to ports 1. and 3. at £ = 71 + 279, the power loss
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Tp.2p=4/3 ®

(b)

Fig. 10. Networks including resistively matched three-ports. (a) A network
designed from point M, representing Case D. (b) A network designed from
point Q, representing Case BB.

Py(r1 + 27) is represented by

Py(ry +2m2) = P(2,11 + 72)(1 — |S22|* — |S1af® ~ [ Ss*).
(26)
Similarly, the power loss at time ¢ = 7, -+ 273 is represented by

Py(T14273) = P(3,71+73)(1—|S33)%—|S13|>~|S23]?) (27)

where P(3, 71 +73) = |['3]2P(3,, 71). | S22|? and |Sa3|? relate
to the reflected power at ports 2c and 3c, respectively.

C. A Numerical Example for Fig. 10(b)
The following are the results of calculations up to the third
component:
Gi(&) = EF(11€2/288 + 11€3 /288 + 11£3€3 /3456 + ...)
Gra(&:) = £1(2362/24 + 23656, /576 + 236563 /13824 + ..
Gha(&) = £1(23€3/24 + 23€2¢3 /576 + 236365 /13824 + ..)
From Section VII-A, the power dissipations at ports 1, 2, and
3 are, respectively.
P., = 0.002928,
P,y = 0.840000,
and P,3 = 0.006667

The scattering matrix derived from (3) is

11 V6

L TR
s=| U 0 @
\1/2_ 12
6 @ 0
12 12

From Section VII-B, we calculate the power losses of the inner
resistors as

Py(ry) = 0.118056,
Pa(m + 212) = 0.000205,
and Py(71 + 273) = 0.032094.

The resultant total power dissipation Py is 0.99995.
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Fig. 11. T's and I's versus the first arriving voltage. — — — Networks

derived from point M.
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Fig. 12. Steady-state voltage versus the first arriving voltage. — - —
Networks derived from point M, ——: Networks derived from point Q.

VIII. CONCLUSION

The expansions of network transfer functions involving
three variables have been used to calculate the output re-
sponses of three-port networks consisting of three transmission
lines and three branching resistors at a junction. These calcu-
lations are useful in the analysis of multiple reflections and
network design where the interconnections of high-speed logic
circuits [3], [11] or computer networks [12] are concerned.
A well-known method, that of the lattice diagram [4], is
often used to achieve the same analysis and design goals.
However, with the method of expansion presented here, each
term corresponds to an individual reflection, i.e., the first
arriving wave, the second arriving wave, and so forth. It is
expected that this series-expansion approach will be easier to
apply than the lattice diagram method.

The proposed networks are found to be useful not only
for dividing input signals without producing reflections, but
also for increasing the speed of logic circuits, because the
given tolerances of output amplitudes can be satisfied from
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the beginning and there is no effective time delay. The results
presented here can be confirmed as follows. Equation (19)
can also be obtained by tracing all possible paths in Fig.
4. The network transfer function in (21) is equal to a result
derived from Masion’s formula [17]. Also, Case B is a familiar
empirical case. The calculations of power dissipation include
no contradiction.

In this paper, lossless transmission lines, TEM wave propa-
gation, and pure resistances have been assumed. With regard to
the resistors, their physical dimensions have been ignored, as
is usual in electric circuit theory [15], because the propagation-
delay times for the resistors are short enough compared with
those for the lines in interconnections. Even if the parallel
capacitances are included in the terminal resistors of Fig. 3,
these capacitive components will disappear in the steady state,
and thus the output transient responses will asymptotically
approach those of a network consisting of pure resistances.
Given this fact and the above assumptions, it can be said that
the fundamental behavior of the three-port transmission-line
network has been investigated.

IX. APPENDIX A
THE CONVERGENCE OF I'¢

Rewriting (3), we obtain [T] = [/2][S]{\/z]~* for the resis-

tive three-port of Fig. 3, where [/z] = diag [\/z1, /72, /%3, |-
T,, > 1 is satisfied in some cases, so the convergence of I';
is of interest:

I} = ()0 = [VAISIIDIS)*[Va D] AD
For a passive network such as that in Fig. 1, we obtain
Py = [a]*[a] ~ ([S][a])* ([S][a]) > 0 (A2)

where “+” indicates a conjugate transpose and [a] =
[a1 az as)' # [0]. Equation (A2) holds for all complex
values of a,, « = 1,2.3 [16]. When [A] = [D][S],

([S)lal) " ((Sllal) - ([Al[al) " ([A][a])

= ([S]la]) " Qo ((S]la]) > O (A3)
where Q, = diag (1 — |T';|?). From (A2) we obtain
Py = [a][a] — ([A][a])* ({A]la]) > 0 (Ad)

Let the eigenvalue and eigenvector of [A] be o and [z]. From
[A][z] = alz] and (A4). we obtain

(=] [=] — ([All=]) " ([A][s]) = (1 |a|})[]*[5] > 0 (AS5)

Therefore, |a|? < 1. From (A1), this condition is equivalent to
Flg — 0(k — oc). Therefore, (20) can be derived from (18).

X. APPENDIX B
POWER DISSIPATION

When a rectangular wave such as that shown in Fig. 13 is
applied to a conductance Gy, the consumed energy will be
Wy = GoA27. Let us assume that this rectangular wave is
applied to port 1 in Fig. 3. As pointed out in the summary of
[6]. the time response consists of replicas of the applied pulse,
with each replica having an amplitude Ay that is given by the

/N

Ao

7 ‘EOL

Fig. 13. A rectangular wave.

coefficient of a term in the network impulse responses. When
one of these replicas is incident to a load Gy, the consumed
energy will be W, = GjAZ7y. When Go = 1 and 4y = 1, the
ratio W; /W, becomes equal to GlAz, and hence represents
the ratio of the power consumption at the load to the incident
unit power.
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